Кто придумал Рычаг - Когда Изобрели.

Работу двигательного аппарата человека обычно излагают с позиций общих законов механики, вполне применимых для оценки системы опорно-двигательного аппарата как системы рычагов. Рычагом называется всякое твердое тело, способное совершать вращательные движения около оси, на плечи которого действуют две противоположные силы: движущая сила (мышечные сокращения) и сила сопротивления. В зависимости от величины движущей силы и силы сопротивления возможно равновесие или движение рычага. Для понимания равновесия или движения рычага необходимо иметь определенное представление о плече рычага и о моменте вращения силы.

Плечом рычага называют расстояние оси вращения (О) до точки приложения силы (ОА и ОБ). Плечом силы называют кратчайшее расстояние - перпендикуляр от оси вращения до вектора силы или его продолжения (OA 1 и OБ 1) (рис. 158).

158. Схема рычага. Плечи рычага (ОА и ОБ), плечи сил (OA 1 и OБ 1)

Участие каждой мышцы в выполнении движений зависит не только от величины подъемной силы, но также и от величины плеча рычага, что определяется моментом силы. Моментом силы называется произведение силы на ее плечо. Моментом силы F I будет произведение F I ·OA I или F I ·Sin ОА; моментом силы F II будет F II ·OБ I , или F II ·Sin·OБ. Таким образом, условие для равновесия рычага достигается тогда, когда сумма моментов сил, действующих на него, относительно оси вращения равна нулю. Если равенство моментов сил нарушается, то рычаг начинает вращаться в направлении той силы, момент которой больше. Момент силы является непостоянной величиной, обусловленной положением одних костей по отношению к другим, образующим данное сочленение. Поэтому при сгибании в суставе будет нарастать плечо рычага сгибателей и соответственно момент силы, т. е. увеличивается угол подхода сухожилия к мышце, что способствует повышению подъемной силы мышцы. В большей части случаев мышцы прикрепляются вблизи суставов и подходят к костям под острым углом. При этом плечо силы меньше плеча сопротивления; при подобном прикреплении мышцы проигрывают в силе.

В опорно-двигательной системе имеются образования, способствующие увеличению плеча силы мышц, благодаря чему значительно повышается момент силы. К этим образованиям относятся сесамовидные кости, блоки, костные отростки и бугры, разнообразные выступы и шероховатости. За счет этих образований значительно возрастает момент силы мышц. Следовательно, сила мышцы зависит не только от количества мышечных волокон, но и от плеча рычага.

Виды рычагов . В зависимости от расположения движущей силы (мышечное сокращение) и силы сопротивления относительно оси вращения различают рычаги первого, второго и третьего рода.

Рычаг первого рода является двуплечим. Обе силы имеют одинаковое направление, а между ними находится ось вращения данного рычага (рис. 159). Рычаг первого рода называют также рычагом равновесия. Например, атлантозатылочное сочленение и тазобедренный сустав представляют оси вращения рычагов первого рода, по сторонам от которых располагаются плечи рычагов.

Рычаг второго рода - одноплечий рычаг, так как приложения сил имеют противоположные направления. Движущая сила оказывает действие на длинное плечо рычага, а сила сопротивления - на короткое плечо (рис. 160). Например, в голеностопном суставе одна сила действует вверх, другая - вниз. Давление, которое возникает в оси вращения рычага, соответствует разности действующих сил. Действие мышцы в конструктивной особенности рычага второго рода направлено на выполнение движений, требующих большой мышечной силы, поэтому рычаг второго рода называют также рычагом силы.

Рычаг третьего рода хотя и является одноплечим рычагом, но его отличие от рычага второго рода заключается в том, что сила действует на короткое плечо, а плечо сопротивления - на длинное (рис. 161). Рычаг третьего рода можно назвать рычагом скорости. Например, при выполнении сгибания в локтевом суставе длинное плечо силы - предплечье - совершает больший размах движений, чем короткое плечо силы, идущей от лучевой бугристости до локтевого сустава. Таким образом, при действии на короткое плечо мышца выигрывает в скорости и расстоянии и проигрывает в силе.


161. Предплечье как рычаг третьего рода. аб - направление равнодействующей мышц-сгибателей предплечья; вг - направление силы тяжести или сопротивления, же - плечо рычага силы тяжести; де - плечо рычага силы мышечной тяги; ж - плечо рычага силы тяжести; аз - "полезная" составляющая силы мышечной тяги; ак - другая составляющая этой силы; е - поперечная ось вращения локтевого сустава

В процессе построения движений у человека постоянно наблюдаются различные биомеханические особенности в смене, разделении и объединении различных рычагов, что необходимо для выполнения движений с наибольшей экономией энергии.

Кинематические цепи и степени свободы . Рассмотренная выше система костных рычагов первого, второго и третьего рода представляет рабочую систему в механическом значении только при определенных условиях. Одним из этих условий являются открытые и закрытые кинематические цепи и степени свободы. В замкнутой системе кинематической цепи оба конца какой-либо части тела закреплены (ребра, закрепленные передними и задними концами, или нижние конечности при стоянии).

При выполнении движений всегда вовлекаются цепи звеньев двигательного аппарата, которые закреплены на одном конце (рука, прикрепленная одним концом к лопатке) и представляют открытую кинематическую цепь.

В открытой системе кинематической цепи объем движений концевого отдела части тела определяется путем сложения суммы степеней свободы всех промежуточных звеньев, составляющих эту часть тела. Не ограниченное в свободе перемещающееся тело обладает шестью степенями свободы в виде поступательного движения в трех измерениях (вверх вниз, вперед назад, вправо влево) и вращательных движений в тех же измерениях. При скреплении одного звена тела в отношении другого ограничиваются степени свободы. При анализе возможных движений двух твердых тел (например, в шаровидном суставе), соприкасающихся в одной точке, видно, что тела способны переместиться взаимно в пяти направлениях и сохранить пять степеней свободы (рис. 162). Эти пять степеней свободы возможны в суставе только теоретически, а фактически подвижность в суставах имеет только три степени свободы. Это ограничение создают капсулы, связки и мышцы, окружающие сустав. Тремя степенями свободы обладают шаровидные суставы, двумя - эллипсоидные, седловидные и мыщелковидные (коленный сустав), одной - цилиндрические и блоковидные. Свободная верхняя конечность представляет открытую кинематическую цепь. Плечевой сустав обладает тремя степенями свободы, локтевой сустав - одной, суставы между костями предплечья - одной, лучезапястный сустав - двумя степенями свободы. Таким образом, кисть способна относительно туловища совершать перемещение по 7 степеням свободы в пределах радиуса всей верхней конечности, имея полную свободу движений.

Если сопоставить соединения в суставах с соединениями частей технической машины, то обнаруживаются существенные отличия. У машины движения единообразны и обладают только одной степенью свободы.

Как указывалось выше, движения у человека складываются в кинематические цепи и практически не осуществляются суставом с одной степенью свободы, поэтому двигательный аппарат человека не является рабочей машиной. Он становится ею только тогда, когда благодаря напряжению мышц исключаются и тормозятся движения, при которых как бы дополнительно возникают "запирающие" сустав механизмы. Тонус мышц и его чередование направляют движения в суставах, тем самым "... устраняются все свободы перемещения, за исключением одной" * . Следовательно, за счет перераспределения работы мышц и их тонуса возможно построение многих механизмов с различным числом степеней свободы.

* (Ухтомский А. А. Физиология двигательного аппарата. Сб. соч. Т. III Л., 1945, с. 145. )

Пара сил . Выше говорилось, что для совершения вращательного движения необходима пара сил, которая складывается из сил сокращающейся мышцы и силы давления или сопротивления, возникающего от трения одной кости о суставную поверхность другой. На примере сгибания в локтевом суставе видно (рис. 163), что сила тяги двуглавой мышцы может быть разложена на составляющие: АБ - момент силы и АГ - силу давления костей предплечья на плечевую кость. Сила, распространяющаяся по диагонали АВ, представляет давление, производимое вдоль плечевой кости, которому противодействует сила давления ДЖ, разложенная на ДЕ и ДЗ. Момент силы АБ вместе с силой ДЖ представляет пару сил, выполняющих сгибание в локтевом суставе. Если бы сила давления отсутствовала, а это возможно при отсутствии оси вращения, то вместо сгибания в локтевом суставе произошло бы подтягивание предплечья. Зная условия, при которых изменяется плечо силы тяги мышц, и механические условия проявления мышечной силы, легко понять, каким образом в процессе построения движений происходит потеря или увеличение мышечной силы.


163. Схема действия "пары сил" (по М. Ф. Иваницкому). ав - равнодействующая двуглавой мышцы плеча; дж - противодействие со стороны плечевой кости; аб - "полезная" составляющая двуглавой мышцы плеча; аг - другая составляющая той же мышцы, способствующая давлению предплечья на плечо в локтевом суставе; де - составляющие силы давления плечевой кости на предплечье; ад - плечо пары сил, из которых одна сила аб, а другая - де. Благодаря работе пары сил сокращение двуглавой мышцы плеча способствует сгибанию в локтевом суставе

Виды мышечной работы . С позиций биомеханики работа мышцы определяется в том случае, когда она производит перемещение части тела или тяжести на какое-либо расстояние. В действительности мышца выполняет работу, начиная с малейшего ее напряжения.

Мышечная работа разделяется на статическую и динамическую .

При статической работе часть мышц, напрягаясь, стремится уравновесить момент силы тяжести или силу сопротивления, что наблюдается при выравнивании или сохранении положения тела или его частей. При этом мышца не укорачивается, не удлиняется, а только напрягается. Статическая работа мышц необходима для сохранения вертикального положения тела или определенной позы. Выделяют три вида статической работы мышц: удерживающую, укрепляющую и фиксирующую. При удерживающей работе мышцы действуют своим моментом тяги, возникающей при сокращении, против момента силы тяжести. При укрепляющей работе напряжение мышц оказывает сопротивление разрыву. При фиксирующей работе сокращение мышц-антагонистов оказывает фиксирующее влияние на суставы.

При динамической работе движение в суставах происходит в результате несоответствия мышечных и механических сил. Динамическая работа мышц подразделяется на преодолевающую и уступающую. При преодолевающей работе мышечная сила больше противодействующей силы и в результате сокращения мышц преодолевается сопротивление, т. е. производится перемещение части тела или груза. Уступающая работа мышц возникает в том случае, если мышечные силы меньше момента противодействующих сил и наступает растягивание сокращенной мышцы. Этот вид работы мышц является важным и необходимым для обеспечения плавности и эластичности движений. Если бы не было подобного регулятора, движения были бы толчкообразными и малокоординированными.

Виды мышечной работы в процессе построения движений часто чередуются. Например, при отведении руки дельтовидная мышца выполняет преодолевающую работу. При удержании руки в горизонтальном положении производится статическая (удерживающая) работа мышцы, а при приведении этой руки - уступающая работа. Таким образом, в каждом виде движений на первый план выступает тот или другой вид мышечной работы.

Антагонисты и синергисты . К антагонистам относятся все мышцы, которые по своей функции действуют в сторону, противоположную другой группе мышц. Например, мышцы-сгибатели плеча являются антагонистами разгибателей плеча. К синергистам относятся все мышцы, которые, сокращаясь, одновременно действуют на сустав, находясь по одну сторону его оси. Примером могут служить сгибатели предплечья и плеча, вызывающие сгибание в локтевом суставе. Функции антагонистов и синергистов могут чередоваться. При выполнении сгибания и разгибания в лучезапястном суставе, с одной стороны, лучевой и локтевой сгибатели, а с другой - разгибатели кисти являются антагонистами. И, наоборот, если выполнять приведение и отведение кисти, они становятся синергистами.

Одно- и многосуставные мышцы . Односуставные мышцы оказывают влияние на один сустав, многосуставные - вовлекают в движение два сустава и более. Относительная длина одно- и многосуставных мышц различная. Односуставные мышцы имеют достаточную длину, чтобы обеспечить размах движений по полной дуге, возможной в данном суставе. Многосуставные мышцы относительно короче и не могут обеспечить такой размах во всех суставах при одновременном движении. В этом легко убедиться на примере работы мышц, находящихся около тазобедренного сустава. При разогнутом коленном суставе амплитуда сгибания в тазобедренном суставе будет меньше, чем при согнутом коленном суставе. При разогнутом коленном суставе мышцы задней поверхности бедра (а они многосуставные) натягиваются, так как их относительная длина будет меньше, и это тормозит сгибание в тазобедренном суставе. Следовательно, степень подвижности в суставах не только определяется формой сустава и его связочным аппаратом, но и зависит от длины мышц, которые не всегда могут использовать всю резервную возможность для сокращения и полностью выполнить движение. Особенностью функции многосуставных мышц является их участие в мышечной координации, т. е. приспособительной особенности организма. При мышечной координации значительно экономятся затраты мышечной энергии. При многих движениях необходимо активное сокращение только од носу ставных мышц, а в других суставах совершается движение за счет тонуса, эластичности многосуставных мышц и силы тяжести. Эта координирующая работа многосуставных мышц хорошо выражена на нижней конечности. При сокращении мышц, лежащих впереди тазобедренного сустава, происходит сгибание не только бедра, но и в коленном суставе. Сгибание в коленном суставе наступает вследствие относительной недостаточности длины многосуставных задних мышц бедра. Разгибание в голеностопном суставе совершается благодаря расслаблению икроножной мышцы. Следовательно, только сокращение одной передней группы мышц около тазобедренного сустава приводит без затраты энергии по принципу координации к выполнению движений в коленном и голеностопном суставах. При выполнении противоположного движения (разгибание в тазобедренном суставе) произойдет пассивное разгибание в коленном суставе за счет относительной недостаточности передних мышц бедра, а в голеностопном суставе наступит сгибание вследствие повышения тонуса икроножной мышцы.

Сложение сил сокращающихся мышц . При сокращении мышцы возникает активная двигательная сила, которая стремится сблизить punctum mobile и punctum fixum. Мышечная сила характеризуется степенью сокращения мышцы, способной при возбуждении удержать в этом состоянии груз до 4-6 кг на 1 см 2 поперечника мышцы. Величина силы зависит от исходной длины мышечных волокон. Предварительно, но не чрезмерно растянутая мышца развивает более высокое напряжение. Активная мышечная сила больше всего развивается в мышцах, построенных из длинных волокон (широкие и веретенообразные мышцы). Мышца может сократиться на 50-57% первоначальной ее длины, но ввиду ограничения степеней свободы суставов она сокращается, как правило, на 35%.

Активная мышечная сила группы мышц (синергистов или антагонистов) складывается из суммы подъемной силы каждой мышцы, а точка приложения этой силы располагается между местами прикрепления всех длинных мышц. Однако у человека только единичные мышцы занимают параллельное друг другу положение. Большей частью их равнодействующие находятся под определенным углом, образуя параллелограммы сил.

Параллелограммы сил . Располагаясь под углом друг к другу, мышцы тянут кость в различных направлениях. В этом случае движение кости совершается не по равнодействующей одной или второй мышцы, а по диагонали параллелограмма, построенного сокращающимися мышцами (рис. 164). Параллелограммы сил могут формироваться и целыми мышечными группами.

Рычаг является одним из древнейших механизмов. Этот простейший механизм позволял многократно увеличивать физические возможности человека. Сегодня трудно определить место и время, когда рычаг был впервые применен человеком осознанно. Наверное, это была палка, с помощью которой человек выворачивал из земли камни и выдергивал съедобные корни. С помощью палки было легче приподнять тяжелый камень, поддев его снизу. Чем палка длиннее, тем легче передвигать камень. Палка здесь выступает в роли простейшего рычага, принцип действия которого люди понимали уже в те давние времена. Рычаг представляет собой жесткий стержень, способный свободно вращаться относительно точки опоры. Примером рычага являются такие древнейшие орудия труда, как мотыга, метла, весло, молоток с расщепом. Человеческое тело представляет целую систему рычагов, где суставы служат точками опоры.

Уже в V тысячелетии до нашей эры механики Месопотамии создали равновесные весы, применив принцип рычага. Установив точку опоры прямо под серединой качающейся доски и положив на оба ее края грузы, они заметили, что вниз опустился край с большим грузом. Если вес грузов будет одинаков, то доска будет находиться в горизонтальном положении. Отсюда следовал вывод, если к равным плечам прикладываются равные усилия, то рычаг находится в равновесии. Если же сменить точку опоры и сделать плечи рычага разными, потребуется приложить разные усилия к его краям, чтобы привести рычаг в равновесие. Меньше усилий потребуется приложить к длинному рычагу и больше — к короткому. Древние римляне использовали этот принцип при создании такого измерительного прибора, как безмен.

Используя принцип рычага, появилась возможность создания механизмов, облегчающих человеческий труд и позволяющих выполнять действия, для которых было недостаточно физической силы человека. Наглядным примером тому могут служить знаменитые египетские пирамиды. Вес блоков, из которых возводились пирамиды, достигал 2500 тонн. Блоки нужно было не только передвигать, но и поднимать. Некоторые ученые и сегодня сомневаются, что древние египтяне могли сами возвести пирамиды без использования двигателей и других мощнейших механизмов. Однако в результате раскопок ученым посчастливилось обнаружить остатки необычного деревянного приспособления. Гигантские блоки, обвязанные веревками, поднимались вверх с помощью деревянных рычагов, имеющих длинные плечи. Приложив немалую силу, строители жали на длинные плечи каждого из рычагов и поднимали блок на высоту роста. Рычаг нашел повсеместное применение. Но только в III в. до н. э. выдающийся механик Архимед, произведя математические расчеты, создал знаменитую теорию рычага.

Решающим для определения вида рычага является расположение точки опоры на нем. В рычагах первого рода точка опоры находится между точками приложения сил, их еще называют двуплечими. Чтобы рычаг находился в состоянии равновесия, силы, которые приложены к плечам, обязательно направлены в одну сторону. Примером таких рычагов являются равновесные весы, ножницы, пассатижи, безмен, шлагбаум. В одноплечих рычагах или рычагах второго рода точки приложения обеих сил находятся от точки опоры с одной стороны. Хотя обе силы приложены к одному плечу, направлены они в разные стороны. Примером такого рычага может служить тачка.

На данном уроке, тема которого: «Простые механизмы» мы поговорим о механизмах, которые помогают нам в работе. На стройках, на производстве, на отдыхе - везде мы нуждаемся в помощи. Такими помощниками выступают рычаги. Сегодня мы о них и поговорим, а также решим задачу и разберем несколько самых простых примеров из жизни.

На данном уроке речь пойдет о простых механизмах.

Простые механизмы - это устройства, с помощью которых работа совершается только за счет механической энергии. Нас окружают устройства, работающие за счет электроэнергии (см. рис. 1), за счет энергии сгорания топлива, но не всегда так было.

Рис. 1. Чайник, работающий за счет электроэнергии

Раньше всю работу можно было выполнить фактически руками, или с помощью животных, за счет ветра или течения воды (мельницы), то есть за счет механической энергии (см. рис. 2).


Рис. 2. Давние простые механизмы

И помогают в этом, облегчают выполнение работы, простые механизмы.

Наши силы ограничены, и это проблема. Мы, например, не можем за один раз поднять и перенести с одного места на другое тонну кирпичей. Зато мы можем потратить больше времени, пройти большее расстояние туда-сюда и перенести кирпичи по четыре за один подход, или сколько сможем унести. Как быть с шурупом, который нужно вкрутить в дерево? Вкрутить его голыми руками мы не можем. Вкрутить его по кусочку, как гору кирпичей по кирпичику, тоже нельзя. Нужно использовать механизм, отвертку. С ней нам приходится прокрутить шуруп на несколько оборотов, чтобы он вошёл в дерево хотя бы на сантиметр. Но зато это несравненно легче, чем руками.

Рассмотрим такой простой механизм, как, например, лопата. Конечно, она облегчает выполнение работы, с ней намного легче копать землю, чем руками. Мы воткнули лопату в землю. Чтобы поднять ком земли, нужно надавить на черенок. Где вы будете давить, чтобы было легче? Опыт подсказывает, что надо надавить, то есть приложить силу, поближе к концу черенка (см. рис. 3).

Рис. 3. Выбор точки приложения силы

Попробуйте приложить силу ближе к полотну лопаты, поднять ком земли станет намного тяжелее. Прикладывая прежнюю силу, вы уже ничего не поднимете. Именно поэтому лопаты с коротким черенком, например саперные, делаются с маленьким полотном: много земли с коротким черенком все равно не поднимешь.

Лопата представляет собой рычаг. Рычаг - это твердое тело, имеющее неподвижную ось вращения (чаще всего это точка опоры или подвеса). На него действуют силы, которые стремятся повернуть его вокруг оси вращения. У лопаты ось вращения - это точка опоры на верхнем краю ямки (см. рис. 4).

Рис. 4. Ось вращения лопаты

На полотно лопаты с некоторой силой действует комок земли, который мы поднимаем, а на черенок, с меньшей силой, - наши руки (см. рис. 5).

Рис. 5. Действие сил

Рассмотрим другой пример: все катались на качелях-балансире (см. рис. 6).

Рис. 6. Качели-балансир

Это тоже рычаг: есть неподвижная ось вращения, вокруг которой качели вращаются под действием сил тяжести детей.

Чтобы перевесить своего друга, сидящего на противоположном сидении, поднять его, вы сядете на самый край качели. Если сядете ближе к опоре качели, можете не перевесить. Тогда нужно на ваше место посадить кого-то взрослого и тяжелого (см. рис. 7).

Рис. 7. Приложенная сила должна быть больше, чем на краю

В такой точке приложения силы нужна большая сила, чем когда сила прикладывалась к краю качели (см. рис. 8).

Рис. 8. Приложение сил

Как вы уже заметили, чем дальше от точки опоры мы приложим силу, тем меньшая нужна сила для совершения одной и той же работы. Причем сила нужна во столько же раз меньшая, во сколько раз больше плечо рычага. Плечо рычага - это расстояние от точки опоры или подвеса рычага до точки приложения силы (см. рис. 9).

Рис. 9. Плечо рычага и сила

Силы будем прикладывать перпендикулярно рычагу.

Направление силы, действующей на рычаг

В каком направлении вы будете действовать на лопату, чтобы поднять землю? Вы приложите силу к лопате так, чтобы она оборачивалась вокруг точки опоры, то есть перпендикулярно черенку (см. рис. 10).

Если вы будете действовать вдоль черенка, землю это не поднимет, вы разве что вытащите лопату из земли или воткнете ее глубже. Если вы будете давить на черенок под углом, силу можно представить как сумму двух сил: вы давите перпендикулярно черенку и одновременно толкаете или тащите вдоль черенка (см. рис. 11).

Рис. 11. Действие силы вдоль черенка

Вращать лопату будет только перпендикулярная составляющая.

Итак, у нас есть рычаг и две силы, которые на него действуют: вес груза и сила, которую мы прикладываем, чтобы этот груз поднять. Мы выявили, что чем больше плечо рычага, тем меньше нужна сила, чтобы уравновесить рычаг. Причем во сколько раз больше плечо рычага, во столько раз меньше сила. Математически это можно записать в виде пропорции:

При этом неважно, приложены силы по разные стороны от точки опоры или по одну сторону. В первом случае рычаг назвали рычагом первого рода (см. рис. 12), а во втором - рычагом второго рода (см. рис. 13).

Рис. 12. Рычаг первого рода

Рис. 13. Рычаг второго рода

Работа с лопатой

Мы рассмотрели, как лопата позволяет нам легче копать землю. Она опирается на край образовавшейся ямки в земле, это будет осью ее вращения. Вес земли приложен к короткому плечу рычага, мы руками прикладываем силу к длинному плечу рычага (см. рис. 14).

Рис. 14. Приложение сил к лопате

Причем во сколько раз отличаются плечи рычага, во столько же раз отличаются силы, приложенные к этим плечам.

Итак, мы приподняли ком земли, но дальше нужно взять лопату двумя руками, поднять ее полностью и перенести землю. Где мы возьмемся за черенок лопаты второй рукой? Всё просто, когда мы уже знаем принцип работы рычага. Вторая рука станет новой опорой рычага. Она должна быть расположена так, чтобы снова дать выигрыш в силе, она должна снова разделить рычаг на короткое и длинное плечи. Поэтому мы возьмем лопату как можно ближе к полотну лопаты. Попробуйте поднять лопату, взявшись обеими руками за край - у вас может ничего не получиться даже с пустой лопатой.

Принцип, по которому работает рычаг, используется очень часто. Например, плоскогубцы - рычаг первого рода (см. рис. 15). Мы действуем на ручки плоскогубцев с силой , а плоскогубцы действуют на кусок проволоки, трубку или гайку с силой , по модулю намного большей, чем . Во столько раз большей, во сколько раз больше:

Рис. 15. Пример рычага первого рода

Еще один рычаг - консервный нож, только теперь точки приложения находятся по одну сторону от точки опоры О. И снова мы прикладываем к ручке силу , а лезвие открывалки действует на жесть консервной банки с намного большей по модулю силой (см. рис. 16).

Рис. 16. Пример рычага второго рода

Во сколько раз больше, чем ? Во столько же, во сколько раз больше, чем :

Выигрыш в силе можно получить огромный, мы ограничены разве что длиной рычага и его прочностью.

Рассчитаем, какой длины должен быть рычаг, чтобы с его помощью хрупкая девушка массой 50 кг смогла приподнять автомобиль массой 1500 кг, надавив на рычаг всем своим весом. Точку опоры рычага разместим так, чтобы короткое плечо рычага было равно 1 м (см. рис. 17).

Рис. 17. Рисунок к задаче

В задаче описан рычаг (см. рис. 18).

Рис. 18. Условие задачи 1

Мы знаем, во сколько раз выигрыш в силе дает рычаг:

Силы прикладываются по разные стороны от опоры рычага, поэтому два плеча рычага в сумме составят его длину:

Мы описали математически процесс, заданный в условии. В нашем случае сила , действующая на плечо , - это вес автомобиля , а сила , действующая на плечо , - вес девушки .

Теперь осталось только решить уравнения и найти ответ.

Из первого уравнения найдем плечо .Бόльшая сила приложена к меньшему плечу рычага, значит - это и есть короткое плечо, равное 1 м.

Длина рычага равна:

Ответ: 31 м.

Как лопата копает сама?

Рассматривая примеры, мы не учитывали силу тяжести, действующую на рычаг.

Представьте, что мы воткнули лопату неглубоко в землю. Если лопата достаточно тяжелая, небольшую массу земли она сможет поднять без нашей помощи, нам даже не нужно будет прикладывать к черенку никакую силу. Лопата повернется вокруг оси вращения под действием сил тяжести, действующей на черенок лопаты (см. рис. 19).

Рис. 19. Поворачивание лопаты вокруг своей оси

Однако чаще всего вес рычага пренебрежимо мал по сравнению с силами, которые на него действуют, поэтому в нашей модели мы считаем рычаг невесомым.

На примере девушки и автомобиля мы увидели, что с помощью рычага можно выполнить такую работу, которую без рычага мы бы никогда не выполнили. С помощью рычага можно было бы сдвинуть даже Землю, о чем говорил Архимед (см. рис. 20).

Рис. 20. Предположение Архимеда

Проблема в том, что рычаг не на что опереть, нет подходящей точки опоры. И вы, конечно, представляете, какой невообразимой длины должен быть такой рычаг, ведь масса Земли равна 5974 миллиарда миллиардов тонн.

Слишком всё хорошо получается: мы можем почти неограниченно уменьшать силу, необходимую для выполнения работы. Должен быть подвох, иначе с рычагом наши возможности были бы безграничны. В чем подвох?

Используя рычаг, мы прикладываем меньшую силу, но при этом совершаем большее перемещение (см. рис. 21).

Рис. 21. Перемещение увеличивается

Мы передвинули черенок лопаты на вытянутую руку, но подняли землю всего на несколько сантиметров. Архимед, если бы всё-таки нашел точку опоры, за всю свою жизнь не успел бы повернуть свой рычаг так, чтобы сдвинуть Землю. Чем меньшую силу мы прикладываем, тем большее перемещение совершаем. А произведение силы на перемещение, то есть работа, остается постоянным. То есть рычаг дает выигрыш в силе, но проигрыш в перемещении, или наоборот.

Рычаги, которые используются «наоборот»

Не всегда рычаги используются для того, чтобы совершать работу, прикладывая меньшую силу. Иногда важно выиграть в перемещении, даже если при этом приходится прикладывать бόльшую силу. Так делает рыбак, которому нужно вытащить рыбу, переместить ее на большое расстояние. При этом он использует удочку как рычаг, прикладывая силу к ее короткому плечу (см. рис. 22).

Рис. 22. Использование удочки

Рычагом является и наша рука. Мышцы руки сокращаются, и рука сгибается в локте. При этом она может поднять какой-нибудь груз, совершить работу. При этом на кости предплечья действуют с некоторыми силами мышцы и груз (см. рис. 23).

Рис. 23. Наша рука - рычаг

Ось вращения предплечья - локтевой сустав. Из таких рычагов состоит весь наш опорно-двигательный аппарат. И сам термин «плечо рычага» назван так по аналогии с плечом одного из рычагов в нашем теле - руки.

Мышцы так устроены, что они при сокращении не могут укорачиваться на те полметра, на которые нам нужно поднять, например, чашку с чаем. Нужно выиграть в перемещении, поэтому мышцы крепятся ближе к суставу, к меньшему плечу рычага. При этом нужно приложить бόльшую силу, но для мышц это не проблема.

Рычаг - не единственный простой механизм, который облегчает нам выполнение работы.

Каким простым механизмом вы пользуетесь, когда поднимаетесь на первый этаж? Можно допрыгнуть до окна, если получится, и просто вскарабкаться в комнату. Мы привыкли совершать ту же работу по перемещению себя домой намного безопаснее и легче - поднимаясь по лестнице. Так мы проделываем больший путь, но прикладываем к себе меньшую силу. Если мы сделаем длинную пологую лестницу, подниматься станет еще легче, будем идти почти как по ровной поверхности, но путь проделать придется бόльший (см. рис. 24).

Рис. 24. Пологая лестница

Наклонная плоскость является простым механизмом. Всегда легче не поднимать что-то тяжелое, а втащить его под уклон.

Рассмотрим, как топор раскалывает древесину. Его лезвие заостренное и расширяется ближе к основанию, и чем глубже клин топора вгоняется в древесину, тем шире она раздается и в итоге раскалывается (см. рис. 25).

Рис. 25. Рубка дров

Принцип действия клина тот же, что и для наклонной плоскости. Чтобы раздвинуть части древесины на сантиметр, нужно было бы приложить огромную силу. К клину достаточно приложить меньшую силу, правда, придется совершить большее перемещение вглубь древесины.

По тому же принципу наклонной плоскости работают и винты. Присмотримся к шурупу: бороздка вдоль шурупа представляет собой наклонную плоскость, только обернутую вокруг стержня шурупа (см. рис. 26).

Рис. 26. Наклонная плоскость шурупа

И мы также без особых усилий вгоняем шуруп на нужную нам глубину. При этом, как обычно, проигрываем в перемещении: нужно сделать много оборотов шурупа, чтобы вогнать его на пару сантиметров. В любом случае это лучше, чем раздвинуть древесину и вставить туда шуруп.

Когда мы вкручиваем шуруп отверткой, мы еще больше облегчаем себе работу: отвертка представляет собой рычаг. Смотрите: сила, с которой на жало отвертки действует шуруп, приложена к меньшему плечу рычага, а мы своей рукой действуем на большее плечо (см. рис. 27).

Рис. 27. Принцип работы отвертки

Рукоятка отвертки толще, чем жало. Если бы у отвертки были ручки, как у штопора, выигрыш в силе был бы еще больше.

Мы так часто пользуемся простыми механизмами, что даже не замечаем этого. Возьмем обычную дверь. Сможете назвать три случая использования простого механизма в работе двери?

Обратите внимание, где находится ручка. Она всегда находится у края двери, подальше от петель (см. рис. 28).

Рис. 28. Местоположение ручки на двери

Попробуйте открыть или закрыть дверь, надавив на нее поближе к петлям, будет трудно. Дверь представляет собой рычаг, и чтобы для открытия двери было достаточно как можно меньшей силы, плечо этой силы должно быть как можно больше.

Присмотримся к самой ручке. Если бы она представляла собой голую ось, открыть дверь было бы трудно. Ручка увеличивает плечо, к которому приложена сила, и мы, прикладывая меньшую силу, открываем дверь (см. рис. 29).

Рис. 29. Ручка двери

Присмотримся к форме ключа. Думаю, вы сможете ответить, зачем их делают с широкими головками. А почему петли, на которых дверь держится, расположены не рядом друг с другом, а приблизительно на четверть высоты от краев двери? Вспомните, как мы брали лопату, когда поднимали ее - здесь тот же принцип. А еще можно обратить внимание на срезанный под углом язычок замка, на шурупы, которыми дверь прикручена к петлям (см. рис. 30).

Рис. 30. Петли двери

Как видите, простые механизмы лежат в основе всевозможных устройств - от двери и топора до подъемного крана. Мы используем их неосознанно, когда выбираем, например, где взяться за ветку, чтобы наклонить ее. Сама природа при создании человека использовала простые механизмы, когда создавала нашу опорно-двигательную систему или зубы с их клиновидной формой. И если вы будете внимательны, вы заметите еще множество примеров того, как простые механизмы облегчают выполнение механической работы, и сможете их использовать еще более эффективно.

На этом наш урок окончен, спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В. Физика: Учебник 7 класс. - М.: 2006. - 192 с.
  1. Virtuallab.by ().
  2. School.xvatit.com ().
  3. Лена24.рф ().
  4. Fizika.ru ().

Домашнее задание

  1. Что такое рычаг? Дайте определение.
  2. Какие примеры рычагов вы знаете?
  3. Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг?

Каждому кто изучал физику , известно высказывание знаменитого греческого ученого Архимеда : «Дайте мне точку опоры, и я переверну Землю». Оно может показаться несколько самоуверенным, тем не менее основания к такому заявлению у него были. Ведь если верить легенде, Архимед воскликнул так, впервые описав с точки зрения математики принцип действия одного из древнейших механизмов рычага.

Когда и где впервые было использовано это элементарное приспособление, основа основ всей механики и техники, установить невозможно. Очевидно, еще в глубокой древности люди заметили, что отломить с дерева ветку легче, если нажать на ее конец, а палка поможет приподнять с земли тяжелый камень, если поддеть его снизу. Причем чем длиннее палка, тем легче сдвинуть камень с места. И ветка, и палка являются простейшими примерами применения рычага принцип его действия люди интуитивно понимали еще в доисторические времена. Большинство древнейших орудий труда мотыга, весло, молоток с ручкой и другие основаны на применении этого принципа.

Простейший рычаг представляет собой перекладину, имеющую точку опоры и возможность вращаться вокруг нее. Качающаяся дощечка, лежащая на круглом основании, вот самый наглядный пример. Стороны перекладины от краев до точки опоры называются плечами рычага.

Доменико Фетти. Задумавшийся Архимед. 1620 г.

Уже в V тысячелетии до н. э. в Месопотамии использовали принцип рычага для создания равновесных весов. Древние механики заметили, что, если установить точку опоры ровно под серединой качающейся дощечки, а на ее края положить грузы, вниз опустится тот край, на котором лежит более тяжелый груз. Если же грузы будут одинаковы по весу, дощечка примет горизонтальное положение. Таким образом, опытным путем было обнаружено, что рычаг придет в равновесие, если к равным его плечам приложить равные усилия.

А что, если сместить точку опоры, сделав одно плечо более длинным, а другое коротким? Именно так и происходит, если длинную палку подсунуть под тяжелый камень. Точкой опоры становится земля, камень давит на короткое плечо рычага, а человек на длинное. И вот чудеса! тяжеленный камень, который невозможно оторвать от земли руками, поднимается. Значит, чтобы привести в равновесие рычаг с разными плечами, нужно приложить к его краям разные усилия: большее усилие к короткому плечу, меньшее к длинному.

Этот принцип был использован древними римлянами для создания другого измерительного прибора безмена. В отличие от равновесных весов, плечи безмена были разной длины, причем одно из них могло удлиняться. Чем более тяжелый груз нужно было взвесить, тем длиннее делали раздвижное плечо, на которое подвешивалась гиря.

Конечно, измерение веса было лишь частным случаем использования рычага. Куда более важными стали механизмы, облегчающие труд и дающие возможность выполнять такие действия, для которых физической силы человека явно недостаточно.

Знаменитые египетские пирамиды и по сей день остаются самыми грандиозными сооружениями на Земле. До сих пор некоторые ученые выражают сомнение в том, что древним египтянам было под силу возвести их самостоятельно. Пирамиды строили из блоков весом около 2,5 т, которые требовалось не только перемещать по земле, но и поднимать наверх. Неужели такое было возможно без использования двигателей?

Равновесные весы.

Строительство пирамид. Литография XIX в.

Да, утверждает итальянский исследователь Фалестиеди, нашедший при раскопках храма царицы Хатшепсут остатки оригинального деревянного приспособления. Обвязанные веревками огромные блоки поднимали с помощью нескольких деревянных рычагов. Нажимая на длинные плечи каждого рычага, строители прикладывали достаточную силу, чтобы поднять камень на высоту своего роста.

Возведение египетских пирамид не единственный случай применения рычаговых механизмов в древности. Рычаг использовался повсеместно, но лишь в III в. до и. э. Архимед произвел математические расчеты и создал первую теорию рычага. Закон равновесия рычага, сформулированный им в ходе многочисленных опытов, не теряет актуальности и в современной физике и звучит следующим образом: «Усилие, умноженное на плечо приложения силы, равно нагрузке, умноженной на плечо приложения нагрузки, где плечо приложения силы это расстояние от точки приложения силы до опоры, а плечо приложения нагрузки это расстояние от точки приложения нагрузки до опоры».

Таким образом, чем длиннее плечо рычага приложения силы, тем меньше потребуется усилий, чтобы преодолеть заданную нагрузку, или тем большую нагрузку можно преодолеть при заданном приложении усилия. Иными словами, соотношение сил, приложенных к плечам рычага, обратно пропорционально соотношению длин его плеч.

Можно понять энтузиазм Архимеда, открывшего эту формулу. Выходит, даже самое незначительное усилие позволяет манипулировать грузами огромной массы, если оно прикладывается к рычагу достаточной длины. И поднять земной шар теоретически так же легко, как ведро с водой нужны только рычаг с плечом около 500 трлн км да точка опоры.

Архимед, переворачивающий Землю с помощью рычага. Гравюра из «Журнала механики». 1824 г.

Положение точки опоры на рычаге является решающим для определения его вида. Различают рычаги первого рода, где точка опоры располагается между точками приложения сил, и рычаги второго рода, где точки приложения сил расположены по одну сторону от точки опоры. Рычаги первого рода называются также двуплечими. Чтобы уравновесить такой рычаг, силы, приложенные к его плечам, должны быть направлены в одну сторону, в противном случае рычаг будет вращаться вокруг точки опоры. Примерами рычагов первого рода являются равновесные весы и безмен, колодезный журавль, ножницы, шлагбаум, детские качели-качалки, пассатижи.

Одноплечие рычаги, или рычаги второго рода, устроены иначе. Теперь обе силы приложены к одному плечу, но направлены в разные стороны. Самым простым примером такого рычага является тачка. Ее точка опоры колесо. Груз расположен в емкости, находящейся сразу за колесом, и сила тяжести направлена вниз. Человек, везущий тачку, направляет свое усилие вверх, прикладывая его у края конструкции, т. е. к ручкам.

Закон, выведенный Архимедом, справедлив и в этом случае. Хотя по конструкции рычаг является одноплечим, но для расчетов по формуле Архимеда длина каждого плеча берется от точки опоры до точки приложения силы. Таким образом, чем ближе к точке опоры расположена нагрузка и чем дальше от точки опоры приложена сила, тем меньшее усилие требуется для уравновешивания нагрузки.

Простейшие рычаги первого и второго рода являлись важнейшими деталями множества механизмов на протяжении нескольких тысячелетий. И все же возможности их были ограниченны. Если точку опоры, о которой восклицал Архимед, в мечтах переворачивающий Землю, чаще всего найти несложно, длина рычага является куда большей проблемой.

Весло также работает по принципу рычага: прикладывая меньшее усилие на длинном плече ручке весла, гребцы получают большее усилие на коротком.

Изготовить цельную перекладину достаточной длины можно из дерева или из металла, но в случае дерева ограничением является высота ствола, а слишком длинные металлические перекладины сами по себе весят так много, что усложняют создание рычагового механизма. Кроме того, выигрыш в силе при применении рычага компенсируется проигрышем в расстоянии, на которое можно переместить груз. Математическое обоснование этому явлению было сделано в Средние века с использованием ньютоновской механики.

Согласно закону сохранения энергии полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной. Это означает, что для сохранения равновесия рычага силы, приложенные к разным его плечам, должны совершать равную работу. При увеличении соотношения между длиной плеча приложения силы и длиной плеча приложения нагрузки возрастает выигрыш в силе, но также возрастает и расстояние, которое требуется преодолеть.

Впрочем, в некоторых случаях проигрыш в расстоянии может обернуться и выигрышем. Так устроен, например, колодец-журавль. Ведро с водой на веревке закреплено на длинном плече перекладины, а усилие прикладывается к плечу гораздо более короткому. В результате перемещение короткого плеча на небольшое расстояние дает возможность вытащить ведро из глубокого колодца и поднять его достаточно высоко.

И все же длина рычага и проигрыш в расстоянии были существенным ограничением для создания механизмов, которые развивали бы усилия, достаточные для решения все более сложных инженерных задач. И вот в 1773 г., спустя два тысячелетия после того, как Архимед произвел свои расчеты, шотландский инженер-изобретатель Джеймс Уатт предложил идею составного рычага, в котором несколько рычагов связываются друг с другом, увеличивая производимое усилие. Выходное усилие первого рычага является входным усилием для второго и т. д., если рычагов в системе больше, чем два.

Военная операция на железной дороге во время Гражданской войны в США. С помощью рычагов рабочие разбирают рельсы.

Еще в VI в. кочевые народы Центральной Азии использовали подобную конструкцию для создания очень мощных изогнутых луков. Стрелы, выпущенные из такого оружия, пробивали доспехи, поскольку загнутые концы лука значительно увеличивали усилие лучника, приложенное к тетиве. Но именно Уатт дал первое числовое обоснование эффективности составного рычага.

Числовой характеристикой механического эффекта при использовании рычага является передаточное отношение, которое показывает, как соотносятся нагрузка и приложенная сила. Чем меньшее значение принимает данная характеристика, тем больший эффект имеет рычаг. В системе, состоящей из двух и более рычагов, передаточным отношением будет произведение передаточных отношений всех рычагов, входящих в систему. Эта формула будет справедлива для любого количества звеньев цепочки.

Конечно, открытие формулы передаточного значения не могло само по себе решить какие-либо инженерные задачи. Однако математическая модель, продемонстрировавшая, что система рычагов дает возможность развить любое усилие, стала для инженеров-механиков своего рода точкой опоры. Большинство созданных человеком механизмов основано на применении простых и составных рычагов. Поэтому смело можно сказать, что рычаг, опираясь на смекалку древнего человека, взявшего палку и сдвинувшего с ее помощью тяжелый камень, действительно перевернул Землю и предопределил развитие механики.

Г. Ховард. Портрет Джеймса Уатта. 1797 г.

Колодец-журавль. Постер из серии «История коммунальных служб Нью-Йорка».

Рычаг в ухе

Самая короткая косточка человеческого организма стремечко, передающее колебания барабанной перепонки к чувствительным клеткам внутреннего уха. Она работает как рычаг, усиливая давление звуковых волн. При слишком сильных звуках мышца стремечка разворачивает косточку так, что соотношение длины плеч косточки-рычага меняется, и коэффициент усиления звука падает.